
An MBR-Oriented Approach for Efficient Skyline
Query Processing

Ji Zhang†, Wenlu Wang†, Xunfei Jiang‡, Wei-Shinn Ku†, Hua Lu§

†Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
‡Department of Computer Science, Earlham College, Richmond, IN, USA
§Department of Computer Science, Aalborg University, Aalborg, Denmark

{jizhang, wenluwang, weishinn}@auburn.edu, jiangxu@earlham.edu, luhua@cs.aau.dk

Abstract—This research proposes an advanced approach that
improves the efficiency of skyline query processing by significantly
reducing the computational cost on object comparisons, i.e.,
dominance tests between objects. Our solutions are based on
two novel concepts. The skyline query over Minimum Bounding
Rectangles (MBRs) receives a set of MBRs and returns the MBRs
that are not dominated by other MBRs. In the dominance test for
MBRs, the detailed attribute values of objects in the MBRs are
not accessed. Moreover, the dependent group of MBRs reduces
the search space for dominance tests. Objects in an MBR are
only compared with the ones in the corresponding dependent
groups of the MBR rather than with the entire dataset. Our
solutions apply the two concepts to the R-tree in order to use its
hierarchical structure in which every node is a natural abstraction
of an MBR.

Specifically, given the R-tree index of an input dataset, we
first eliminate unqualified objects by utilizing the skyline query
over MBRs (i.e., intermediate nodes in the R-tree). Subsequently,
we generate dependent groups for the skyline MBRs. Two
dependent group generation methods that rely on either the
sorting technique or the R-tree index are developed. Further, we
apply an existing skyline algorithm to every dependent group, and
the results of the original skyline query are the union of skyline
objects in the dependent groups. In addition, we also analyze
the cardinality of the two new concepts based on a probabilistic
model, which enables us to analyze the computational complexity
of the proposed solutions. Our experimental results show that the
proposed solutions are clearly more efficient than the state-of-the-
art approaches.

I. INTRODUCTION

Given a set of objects in a d-dimensional space, the skyline
query returns objects that are not dominated by any other
objects in the object set [2]. In a d-dimensional space Rd,
an object q can be represented as q = {x1, x2, ..., xd} where
q.xi is the attribute value of q on the ith dimension. Without
loss of generality, in this paper we assume that the minimum
values are preferred in all dimensions. Formally, the dominance
among objects and the skyline query are defined as follows.

Definition 1: (Object Domination) Given two objects q, q′

∈ Q, q dominates q′, denoted by q ≺ q′, if ∀ i ∈ {1, ..., d},
q.xi ≤ q′.xi and ∃ j ∈ {1, ..., d}, q.xj < q′.xj .

Definition 2: (Skyline Query over Objects) The skyline
of an object set Q in a d-dimensional data space, denoted
by SKY (Q), is a complete subset of objects that are not
dominated by any other objects in Q.

SKY (Q) = {q ∈ Q | � q′ ∈ Q, q′ ≺ q} (1)

Skyline queries have been used as convenient means
for multi-criteria decision-making since their introduction to
database community. An example of a skyline query over
hotels in a 2-dimensional space is illustrated in Fig. 1. In the
example, the query takes the price and the distance from hotel
to beach into account, and returns hotels {a, e, h, i, j} as
skyline objects because there does not exist any hotel that is
either cheaper (with the same distance), closer to the beach
(with the same price), or better in both dimensions.

So far many skyline algorithms have been proposed for
efficiently addressing skyline queries. There are algorithms
that do not require indexes on the data set, e.g., BNL
(Block-Nested-Loop) [2], D&C (Divide and Conquer) [2],
SFS (Sort-Filter-Skyline) [6], LESS (Linear Elimination Sort
for Skyline) [10], OSPS (Object-based Space Partitioning
Skyline) [29], and VSkyline [5]. Others, such as Bitmap [27],
Index [27], NN (Nearest Neighbor) [14], BBS (Branch-and-
Bound Skyline) [22] [23], ZSearch [18] [17], and SSPL [11],
rely on indexes built in a pre-processing stage.

To minimize I/O accesses, BBS searches for skyline candi-
dates by expanding unvisited nodes with the smallest mindist
in an R-tree. Specifically, BBS iteratively picks a node with
the smallest mindist from a heap for dominance test against
all skyline candidates found so far. Since the dominance test
is performed at every level of the R-tree, unqualified objects
can be discarded by pruning out their ancestor nodes. ZSearch
works in a similar manner except that all objects are indexed
in ZBtree by their addresses in the Z-order curve.

However, we observe that BBS and ZSearch suffer from
intensive object comparisons in the query evaluation over large
object sets due to large heap sizes. In general, all skyline candi-
dates in both algorithms are checked twice with the dominance
test. The first dominance test happens before inserting objects
into the heap. All newly visited objects are examined against

Fig. 1. A skyline query over
hotels.

Fig. 2. A skyline query over
MBRs. A, B, C, D, and E in-
dicate five MBRs.

806

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00077

skyline candidates found so far, and unqualified objects are
discarded in order to minimize the size of the heap. The second
dominance test is conducted when the object is selected from
the heap for skyline computation.

On the other hand, Sorted Positional Index List (SSPL) is
very sensitive to varied object sets because its efficiency relies
heavily on the pruning power of the pivot object. In SSPL,
all objects are pre-sorted and indexed in every dimension in
advance. With the indexes, SSPL can efficiently find a pivot
object and discard all objects that have not been scanned.
Subsequently, a sorting-based skyline algorithm (e.g., SFS or
LESS) is applied to the remaining objects for producing global
skyline objects. As our experiments in Section V-B show, the
object elimination rate of the pivot object is very low over
anti-correlated datasets, and the cost of skyline computation
over the remaining objects is very high.

Motivated by the limitations of the state-of-the-art, in this
paper we propose a novel approach that improves skyline com-
putation efficiency by minimizing the cost of object compari-
son. Our solutions combine two novel concepts. The concept of
skyline of Minimum Bounding Rectangles (MBRs) enables
us to perform dominance test among MBRs and maintain a
much shorter skyline candidate list than BBS or ZSearch.
In this way, the cost of dominance test among candidates
in our approach is significantly lower than BBS or ZSearch.
Moreover, the dependent group of MBRs specifies a smaller
search space, in which objects are only needed to compare with
the ones that they are dependent on rather than all objects in
the input dataset.

Specifically, we first propose new definitions of domina-
tion and dependency among MBRs, and develop a number
of theorems and properties based on the definitions. The
dominance and dependency test do not need to access the
detailed attribute values of objects in the MBRs. Then, we
construct our advanced solutions by utilizing the two new
concepts. Motivated by the hierarchical structure of the R-
tree index, in which every intermediate node is an abstraction
of an MBR, we apply the two concepts to the R-tree index
in our solutions, which can efficiently address the skyline
query in three steps. First, the skyline of MBRs is produced
by conducting a skyline query over the R-tree of the input
dataset. The skyline of MBRs is a subset of parent nodes of
leaves not dominated by any other nodes. Second, dependent
groups of MBRs (or nodes) are generated for minimizing the
cost of object comparison. We develop two dependent group
generation methods that rely on either the sorting technique or
the R-tree index. Third, the skylines are output by sequentially
applying a skyline algorithm (e.g., BNL or SFS) to every
dependent group, and the global skylines are the union of the
results in the dependent groups. We also present the cardinality
estimation of the two new concepts based on a probabilistic
model, which is used for further analyzing the computational
complexity of the proposed algorithms in Section IV.

We make the following contributions in this paper:

• We propose a new definition of domination among
MBRs. In the dominance test for MBRs, no concrete
attribute values are required from individual data ob-
jects. A number of theorems and properties are derived
based on the new definition.

• We propose a novel concept of skyline query over
MBRs, which can be used to aggressively filter out
unqualified MBRs and objects.

• We also propose a novel concept of dependent group
of MBRs to reduce expensive dominance tests.

• We develop a novel skyline solution for efficient
skyline query evaluation based on our MBR-oriented
designs.

• We use a probabilistic model to estimate the cardi-
nalities of the MBR-oriented skyline and dependent
groups. The estimations enable us to analyze the
computational complexity of our algorithms.

• We evaluate the performance of the proposed solutions
through extensive experiments on synthetic and real
datasets.

II. MBR-ORIENTED APPROACH

A. Framework Overview

Skyline queries are evaluated in three steps in our solutions,
displayed in Fig. 3. In addition to an input object set, our so-
lutions also receive the R-tree index of the object set as inputs.
Two algorithms are proposed to compute skyline queries over
MBRs. One algorithm (Alg. 1) loads all intermediate nodes
of the R-tree into memory, and outputs the exact result of
the skyline query, while the other algorithm (Alg. 2) produces
a superset result for reducing I/O cost if the R-tree is large.
All false positives will be eliminated in the third step. Then,
we generate dependent groups of every skyline MBR. Alg. 3
assumes the size of skyline candidates produced in the first step
is small, while Alg. 4 and Alg. 5 utilize external sorting and
the R-tree index for dependent group generation, respectively.
With the dependent groups, objects in an MBR are only
compared with the ones in the dependent group of the MBR
rather than objects in all skyline MBRs. Finally, all dependent
groups are sequentially scanned by using a skyline algorithm
(e.g., BNL), and the results of skyline query are the union of
skyline objects in the dependent groups.

Since the size of input datasets may vary greatly among
cases, we will present both in-memory and external algorithms
in the first and second steps. Either of them can be selected
according to applications. In this paper, we present skyline
solutions that automatically select either Alg. 1 or Alg. 2 by
detecting the size of the R-tree, and use Alg. 3, Alg. 4 or
Alg. 5 for dependent group generation.

B. Skyline Query over MBRs

Before illustrating our algorithms for the skyline query over
MBRs, we will start with the formal definition of the query
and its properties. In this paper, an MBR can be abstracted
by a triple M = 〈min,max, ob_list〉, where min and max

Fig. 3. A framework of the proposed skyline solutions.

807

specify the minimum and maximum attribute values of objects
in the MBR in all dimensions, and ob_list is a list of object
references. M does not contain detailed attributes of objects
in M if we do not explicitly mention them in this paper. The
novel query is formally defined as follows.

Definition 3: (Domination between two MBRs) Given two
MBRs M and M ′, M dominates M ′, denoted by M ≺ M ′, if
there must exist an object in M , which dominates all possible
objects in M ′.

The definition can be easily extended from object domina-
tion (Definition 1); however they differ at: 1) an MBR may
contain many objects. If M only dominates a subset of objects
in M ′, then M does not dominate M ′; 2) the detailed attributes
of objects in the MBRs are not available in the dominance test.
The domination can be decided only by using min and max
of MBRs.

Additionally, in a special case, the domination between
an MBR M and an object q is conceptually equivalent to
the domination between M and another MBR that contains
only one object q. The domination test between two MBRs
becomes the object dominance test if both MBRs only contain
one object, i.e., min and max are the same for both MBRs.

Fig. 4 shows an example of domination between two
MBRs. M dominates B because any object in M dominates all
objects in B. Accessing the detailed attributes of objects in M
or B is unnecessary. But we cannot determine the domination
between M and A by using their min and max. A may contain
an object d that is not dominated by any objects in M (M may
only contain m1 and m3). So, M is incomparable to A.

The transitivity of domination among MBRs holds.

Property 1: (Domination Transitivity) Given three MBRs
M , M ′, and M∗, then

M ≺ M∗ if M ≺ M ′ and M ′ ≺ M∗ (2)

Theorem 1: Given two MBRs, M and M ′, M ≺ M ′ if
and only if M ′ is dominated by at least one pivot point of M ,
denoted by PIV OT (M),

M ≺ M ′ ⇐⇒ ∃ q ∈ PIV OT (M), q ≺ M ′ (3)

where PIV OT (M) = {pk | 1 ≤ k ≤ d},

pk.x
i =

{
M.min.xi if i = k

M.max.xi if i �= k, 1 ≤ i ≤ d
(4)

Proof: If M ≺ M ′, we can create a third MBR M∗ that
contains all objects in PIV OT (M). Apparently, M∗ ≺ M ′,

Fig. 4. Examples of dominance
regions of MBRs in a two dimen-
sional space.

Fig. 5. Examples of dependent
regions of MBRs in a two dimen-
sional space.

because M∗.min = M.min and M∗.max = M.max. Thus,
we can conclude that there must exist an object in M∗ or
PIV OT (M), which dominates M ′.

Suppose there exists an object p ∈ PIV OT (M) dominat-
ing M ′; p = {M.max.x1, ..., M.min.xi, ..., M.max.xd}. Be-
cause M has a lower bound M.min.xi on the ith dimension,
there must exist an object q in M , q.xi = M.min.xi. Thus, q
either dominates or is equal to p. By domination transitivity,
q dominates M ′, and thus M ≺ M ′.

It is worth noting that object attributes are not used in
dominance test between two MBRs. In Fig. 4 for example,
there might be an object at m2, but M does not dominate A
because the attributes of m2 are not used in the dominance test.
All information used only includes M.min, M.max, A.min,
and A.max.

The dominance region of an MBR and the power of
domination of an MBR can be obtained by extending the
dominance region of an object [8] and utilizing the pivot points
of the MBR defined in Theorem 1.

Property 2: (Dominance Region) By Theorem 1, the
dominance region of an MBR M , denoted by DR(M), is the
union of the dominance regions of q, q ∈ PIV OT (M).

DR(M) =
⋃

q ∈ PIV OT (M)

DR(q) (5)

Fig. 4 shows an example of the dominance region of M in a
2-dimensional space. Object a is dominated by M because all
objects in M dominate a. Moreover, object b is also dominated
by M by Theorem 1. There must exist at least one object
on the line segment from m1 and m2 in M ; otherwise the
line segment cannot be the minimum boundary of M on x
axis. Similarly, object c is dominated by any object on the line
segment from m2 to m3 in M . Thus, the dominance region
of M in the figure is the union of the dominance regions of
m1 and m3, which is highlighted in grey.

Property 3: (The Power of Domination) Given an MBR
M , let PIV OT (M) = {p1, ..., pd}, the domination power of
M can be evaluated by the fused domination power of p ∈
PIV OT (M), which can be calculated by

VDR(M) = VDR(p1) +
∑

1<i≤d

(
VDR(pi) − VDR(pi)∩DR(p1)

)

=
∑

p ∈ PIV OT (M)

VDR(p) − (|PIV OT (M)| − 1) × VDR(M.max)
(6)

where VDR(p) denotes the volume of the dominance re-
gion of p and |PIV OT (M)| represents the number of ob-
jects in PIV OT (M). Equ. 6 is straightforward except that
the overlapping region of DR(pi) and DR(p1) is equal to
DR(M.max), the proof of which is given below.

Proof: Given any two objects pi and pj in PIV OT (M),
we can calculate that pi.x

k = pj .x
k = M.max.xk, where k 	=

i and k 	= j by Theorem 1. And in the 2-dimensional space
containing objects {xi, xj}, pi = {M.min.xi, M.max.xj} and
pj = {M.max.xi, M.min.xj}. Thus, it is easy to see that
if any object q is dominated by both pi and pj , q must be
either dominated by or equal to M.max. Thus, the overlapping
region of the dominance regions of pi and pj is equal to the
dominance region of M.max. Property 3 is proved.

808

Property 4: (Domination Inheritance) Given two MBRs,
M and M ′, if M dominates M ′, then M dominates all subsets
of M ′.

M ≺ M ′ =⇒ M ≺ M∗, where M∗ ⊆ M ′ (7)

Definition 4: (Skyline Query over MBRs) Given a set of
MBRs, the skyline query over MBRs returns all MBRs that
are not dominated by any other MBRs.

Fig. 2 displays an example of the skyline query over MBRs.
There are five MBRs in the figure, and {A, B, C} are skyline
MBRs because D and E are dominated by A.

With the definition of the new skyline query, we will
propose two algorithms that receive the R-tree index of the
input dataset and output skyline MBRs. In general, the input
dataset has been partitioned into small MBRs in the R-tree;
these MBRs are abstracted by the intermediate nodes at the
bottom of the R-tree. The output of our algorithms is the
skylines of these smallest MBRs; however, both algorithms
proceed from top to bottom by using the depth-first search.
Moreover, the in-memory method (Alg. 1) assumes that all
intermediate nodes of the R-tree can fit in memory, while the
second method decomposes the R-tree into sub-trees in such
a manner that each sub-tree can be loaded into memory. In
order to avoid the cost of dominance test among sibling sub-
trees, we turn to an alternative method, in which dominance
test is only performed in sub-trees. The false positives (the
ones dominated by MBRs in sibling sub-trees) in the results
will be detected in dependent group generation (the next step)
and eliminated in the third step.

Algorithm 1 I-SKY DS(RQ)

1: SKY DS(RQ) = [];
2: while Visit all nodes in RQ do
3: Let M be the newly visited node;
4: for M ′ ∈ SKY DS(RQ) do
5: if M ′ ≺ M then
6: Discard M and its descendants (Property 4);

7: if M ≺ M ′ then
8: Discard M ′ from SKY DS(RQ);

9: if M is at bottom and is not dominated then
10: Append M to SKY DS(RQ);

11: return SKY DS(RQ);

Our in-memory skyline algorithm is shown in Alg. 1, which
receives the R-tree index of input dataset Q, denoted by RQ,
and produces all incomparable intermediate nodes (MBRs) at
bottom of the R-tree. The fundamental idea of the algorithm is
to use the depth-first search method to visit all nodes from top
to bottom. During the process, a list, SKY DS(RQ) (defined at
line 1), maintains a set of skyline nodes found so far. All new
nodes are compared with these candidates. If newly visited
nodes are dominated by any nodes in SKY DS(RQ), they and
their descendants are discarded (at lines 5-6) because child
nodes represent subsets of objects covered by the parent node
(Property 4). The nodes in SKY DS(RQ) are removed if they
are dominated by any newly visited nodes (at lines 7-8). If
new nodes are at the bottom and incomparable with all nodes
in SKY DS(RQ), they are appended to SKY DS(RQ) as new
skyline MBRs (at line 9-10). After all nodes in the R-tree are
visited, the nodes in SKY DS(RQ) are returned as the skyline
MBRs of the query.

For the cases of large R-trees, we also propose an external
skyline algorithm that decomposes R-trees into sub-trees.
Every sub-tree can be loaded into memory and the skyline
query over the sub-tree can be addressed by using Alg. 1.
There are many tree decomposition methods; Alg. 2 adopts
one that maximizes the memory utilization. Specifically, let F
be the fan-out of the R-tree and W be the size of memory in
nodes, the input R-tree is first partitioned into sub-trees with
depth �logF W (at line 4). Then, we visit sub-trees from top
to bottom and calculate skyline MBRs of the sub-trees using
Alg. 1 (at line 8). In the process, a sub-tree is discarded if its
root node is eliminated in the dominance test in its parent sub-
tree. Thus, we only push the skyline MBRs of Rroot′ to ds
(at line 14). If we reach the bottom of the R-tree, the skyline
MBRs of sub-trees are written to the output data stream output
(at line 12); otherwise, the roots of intermediate sub-trees are
pushed to ds, and will be expanded in subsequent iterations.
We make a clone of the visited sub-tree at line 7 to highlight
that SKY DS(Rroot′) contains skyline MBRs of the sub-tree
rather than the ones of the input R-tree. The stop condition of
Alg. 1 requires that all nodes at the bottom of sub-trees cannot
have any children. Finally, all nodes in output are returned as
skyline MBRs.

Algorithm 2 E-SKY DS(RQ, W , F)

1: DataStream ds, output;
2: Let root be the root node of RQ;
3: ds.write(root);
4: depth = 	logF W
;
5: repeat
6: node = ds.read();
7: root′ = node.clone(depth);
8: SKY DS(Rroot′) = I-SKY DS(Rroot′);
9: for ∀ M ′ ∈ SKY DS(Rroot′) do

10: Find the corresponding node M in RQ;
11: if M.child = ∅ then
12: output.write(M);
13: else
14: ds.write(M);

15: until ds is empty;
16: return output;

Theoretically, an additional merging step is required for
producing exact results; a skyline node in a sub-tree can be
dominated by other nodes in its sibling sub-trees. However, we
turn to an alternative solution. The reasons are (1) the merging
process would suffer from high cost of object comparison and
I/O access in large R-trees; skyline candidates in a sub-tree
have to compare with all candidates in its sibling sub-trees;
(2) all false positives can be detected in dependent group
generation process with subtle cost. Instead of comparing with
objects in all sibling nodes, we only need to visit dependent
sub-trees with the dependent group information.

Fig. 6 displays an example where the R-tree is partitioned
into five sub-trees. In the figure, F and W are fixed at 2 and
8, and the depth of sub-trees is 3. If the result of skyline query
in the root sub-tree (sub-tree 11) is {M11,M13}, then only the
sub-trees rooted at M11 and M13 are expanded, and other two
sub-trees are discarded.

C. Dependent Groups of MBRs

With skyline MBRs, an intuitive method to find the results
of a skyline query over objects is to use a skyline algorithm

809

(e.g., BNL or SFS) that sequentially checks objects in the
MBRs. If too many objects are in the MBRs, we have to write
intermediate results to a temporary file, and read them back
for iterative dominance test, which would be expensive due
to the large number of skyline candidates (or the number of
iterations). To minimize the cost of the dominance test, we
propose a novel concept, dependent groups of MBRs, which
specifies the minimum dependent MBRs of a given MBR. With
the dependent group information, only objects in the dependent
MBRs are retrieved during dominance test rather than reading
all objects. In this subsection, we first introduce the definition
of dependent group over MBRs and its properties. Then, three
dependent group generation algorithms that utilize either main
memory or external memory are presented.

Definition 5: (Dependency between Two MBRs) Given two
MBRs M and M ′, M is dependent on M ′ if the determination
of skyline objects in M relies on at least one object in M ′. In
other words, M is independent on M ′ if the determination of
skyline objects in M does not rely on any objects in M ′.

Fig. 5 shows an example of the dependency in a two
dimensional space. The independent region and dependent
region of M are highlighted in light grey. M is independent
of object d and MBR D, because none of the objects in D
potentially dominates any objects in M . On the other hand,
M is dependent on object e and MBR E, as E may contain
an object at e, which dominates objects (e.g., f) in M . Thus,
all objects in E are required in the dominance test of objects
in M .

Theorem 2: Given two MBRs, M and M ′, M is dependent
on M ′ if M ′.min dominates M.max and M is not dominated
by M ′.

Proof: Theorem 2 provides a method to find dependent
MBRs of a given MBR, which can be proved by contradiction.
Suppose M ′.min dominates M.max and M is not dominated
by M ′, but M is not dependent on M ′, then there must not
exist an object q ∈ M ′ that potentially dominates any object in
M , which contradicts the assumption that M ′.min dominates
M.max. This completes the proof.

It is noteworthy that Theorem 2 focuses primarily on
determining the dependency of MBRs by using domination of
MBRs, while Cui et al. [8] developed a way to find incom-
parable MBRs for parallelization by utilizing the dominance
region of objects.

Definition 6: (Dependent Groups of MBRs) Given an MBR
M , the dependent group of M is a set of MBRs on which M
is dependent.

Take MBRs in Fig. 5 for example, the dependent group of
M is {E}. The dependent group of E is an empty set, which

Fig. 6. The sub-tree structure in an R-tree.

indicates E is not dependent on any MBR in the figure. D is
dominated by E.

Property 5: Given an MBR Q, and a set of disjoint subsets
of Q, denoted by M where

⋃
M∈M

M = Q, let DG(M) be
the dependent group of an MBR M in M, then SKY (Q) is the
union of SKY DG(M,DG(M)), where SKY DG(M,DG(M))=
{q | q ∈ M and q ∈ SKY (M

⋃
DG(M))}.

SKY (Q) =
⋃

M∈M

SKY DG(M,DG(M)) (8)

Property 5 demonstrates the basic idea of the third step
of our proposed solutions. This step sequentially scans all
dependent groups of skyline MBRs, and returns the union
of skyline objects in the dependent groups as the global
skyline of the input dataset Q. Note that we only produce
skylines in M when scanning the dependent group of M
(SKY DG(M,DG(M)) only contains skyline objects in M),
so that there are not duplicate skyline candidates in the global
result. The dependent groups of MBRs can be generated by
using Alg. 3, Alg. 4, or Alg. 5.

Algorithm 3 I-DG(M)

1: DGMap = [];
2: for M ∈ M do
3: dependent = [];
4: for M ′ ∈ M, M ′ �= M do
5: if M ≺ M ′ then
6: Set M ′ to be dominated;

7: if M ′ ≺ M then
8: Set M to be dominated;

9: if M is dependent on M ′ (Theorem 2) then
10: dependent.append(M ′);

11: DGMap.append(〈M , dependent〉);

12: return DGMap;

Alg. 3 describes an in-memory dependent group generation
algorithm, which assumes that the input set of MBRs M can
be loaded into memory. In particular, a map DGMap is created
for keeping dependent groups of all input MBRs. We check
the dependency of every pair of MBRs in the for-loop (from
line 2 to 11), and mark all MBRs being dominated. These
sets (false positives generated by Alg. 2) will be skipped (or
eliminated) in the third step. Finally, DGMap is returned as
the result of Alg. 3.

It is worth noting that Alg. 3 can be used for the cases
where the R-tree of an input dataset can be loaded into
memory. M abstracts the set of all nodes (or MBRs) at the
bottom of the R-tree, and DGMap only contains the nodes
that are not dominated by any other nodes.

We also propose two external alternatives for generating
dependent groups on large datasets. Alg. 4 first sorts the input

Fig. 7. The dependent group of
MBR C.

Fig. 8. An example of dependent
group generation by using Alg. 5.

810

MBRs in an ascending order on the ith dimension, and then
sweeps the MBRs from the minimum value on the dimension
to the maximum value. With the sorting, the dependency
detection of an MBR M can stop at the place M.max.xi,
because M cannot be dependent on any MBR M ′, M ′.min.xi

> M.max.xi (at line 11). We also mark the MBRs that are
dominated and write them to the output stream instead of
applying an additional elimination step, because this can be
completed by skipping all these MBRs in the third step of our
solutions.

Algorithm 4 E-DG-1(M)

1: DataStream output;
2: Sort M ∈ M by M.min.xi in an ascending order;
3: for (i = 0; i < |M|; i++) do
4: dependent = [];
5: for (j = 0; j < |M|; j ++) do
6: if M[j] ≺ M[i] then
7: Set M[i] to be dominated;
8: Break;

9: if M[i] ≺ M[j] then
10: Set M[j] to be dominated;

11: if M[i].max.xi < M[j].min.xi then
12: output.write(〈M[i], dependent〉);
13: Break;

14: if M[i] is dependent on M[j] (Theorem 2) then
15: dependent.append(M[j]);

16: return output;

Fig. 7 displays an example of Alg. 4 in a two dimensional
space. When MBR C is visited (M[i] = C in Alg. 4), then
we only scan MBRs D, B, and A. C is not dependent on E.
Thus, the dependent group of C is {B}.

Before describing the second external dependent group
generation algorithm, we first present two properties used in
the algorithm.

Property 6: Given two MBRs, M and M ′, if M is inde-
pendent of M ′, then M is not dependent on any subsets of
M ′.

Proof: The proof is trivial, and thus is omitted.

Property 7: Given two MBRs, M and M ′, if M is de-
pendent on M ′, then M may be dependent on either all or a
portion of disjoint subsets of M ′.

Proof: The proof is trivial, and thus is omitted.

Alg. 5 relies on the R-tree index of the input dataset with an
assumption that the dependent group of every sub-tree has been
calculated and associated with the root node of the sub-tree in
advance. The dependent groups of sub-trees can be generated
by applying Alg. 3 to the sub-trees during the process of
skyline calculation in Alg. 1 or Alg. 2. Specifically, Alg. 5
starts with sub-trees at the bottom, and traces back to the
root sub-tree in order to find all possibly dependent nodes by
iterating the R-tree. At an ancestor sub-tree, we only expand
the search space at the sibling nodes that the visited node
is dependent on (Property 7). All independent nodes can be
skipped by using Property 6. In the for-loop from line 3 to 24,
M refers to a node in the input set, and M ′ always points to
the roots of sub-trees. In the while-loop from line 6 to 9, the
nodes that any ancestors of M are dependent on are pushed
to a data stream ds. In the while-loop from line 10 to 22, all

descendant nodes of the ones in ds are visited and checked
for dependency with M . Similar to Alg. 4, any nodes that are
marked as dominated in the process will be eliminated in the
final step of our solutions.

Algorithm 5 E-DG-2(M, RQ)

1: DataStream ds, output;
2: Let root be the root node of RQ;
3: for ∀M ∈ M do
4: M ′ = M
5: w = DG(M) in the sub-tree of M ;
6: while M ′ �= root do
7: M ′ = M ′.parent;
8: if M ′ has a dependent group map then
9: Push all dependent nodes of M ′ in ds;

10: while ds is not empty do
11: M ′ = ds.read();
12: if M ′ ≺ M then
13: Set M to be dominated;
14: Break;

15: if M ≺ M ′ then
16: Set M ′ to be dominated;
17: Continue;

18: if M is dependent on M ′ then
19: if M ′ is a node at bottom then
20: w.append(M ′);
21: else
22: Push SKY DS(M ′) to ds;

23: if M is not dominated then
24: output.write(〈M , w〉)

25: return output;

Fig. 6 also illustrates an example of dependent groups asso-
ciated with sub-trees. The example assumes that the dependent
groups in sub-tree 11 are DG(M11) = {M13}, and DG(M13)
= {M11}. Fig. 8 displays an example of finding the dependent
group of M . Assume that Alg. 5 is visiting M8 and its ancestor
node M4, and pushing all nodes in the dependent group of
M4 to ds. Subsequently, when M4 is read at line 12, if M4 is
dependent on M5, then we push the skyline nodes in the sub-
tree rooted at M5 for the next iteration. If M7 is eliminated in
the skyline query of the sub-tree, then M8 is only compared
with M9 and M10 for the dependency test in the example.

Important Optimization. The last step of our solutions is
to sequentially calculate the skyline objects in the dependent
groups. There are two optimization methods that can further
reduce the cost of the skyline computation. First, the order of
processing dependent groups is important; starting with small
dependent groups would be more efficient than starting with
big ones; loading a small group incurs less I/O cost. There
is a higher possibility that all objects can be fit in memory.
Second, when objects in an MBR M and its dependent MBRs
are loaded, we (1) discard objects in M if they are dominated
by any other objects in M or its dependent MBRs; (2) discard
objects in the dependent MBRs if they are dominated by any
objects in M . After the dominance test, objects remaining
in M are the output of the skyline query in the dependent
group. The dependent MBRs would have fewer objects, which
potentially reduces the cost of skyline computation in other
dependent groups containing one of these MBRs. Moreover,
the dominance test is not performed on objects between two
dependent MBRs, because their dependency is not described
by the dependent group of M .

811

Comparison with BNL and SFS. We compare the second
and third steps of our solutions with the one that directly uses
BNL or SFS after obtaining the skyline MBRs (the first step)
in terms of number of object comparisons. Using BNL for
example, given a set of MBRs M and the average size of
MBRs |M |, the number of object comparisons of BNL over
M is n(n − 1)/2, where n = |M| × |M | denotes the total
number of objects in M. On the other hand, in our solutions,
the dependent group generation takes |M|2 in the worst case.
Moreover, let A be the average size of dependent groups, then
the number of object comparisons in the third step of our
solutions is A × |M | × |M | × |M|, where A × |M | × |M |
indicates the cost of comparing objects in M with all other
objects in the dependent group, and there are |M| dependent
groups in total for the query evaluation. The cost can be
further reduced by applying the optimization, which only
reads the skylines in MBRs once they have been calculated.
Thus, the cost of the second and third step in our solution is
|M|2+A×|SKY (M)|2×|M|, which is less than the cost of

BNL (
(|M|×|M|)(|M|×|M|−1)

2) in most cases. It is worth noting
that our solutions degrade to BNL in the worst case, in which
all MBRs are dependent on each other. A similar method can
be applied to the comparison between our methods and SFS
with pre-sorted objects.

III. CARDINALITY ESTIMATION

We provide an estimation of the cardinality of skyline query
and dependent group of MBRs in this section. The cardinal-
ity estimation will be used for analyzing the computational
complexity of our proposed algorithms in Section IV.

A. Cardinality of Skyline Query over MBRs

1) Discrete Data Space: Given a discrete data space Rd =
[0, ni)d, where ni indicates the upper bound of the data space
in the ith dimension. The attribute values of objects under a
uniform data distribution are evenly distributed across the data
space in each dimension.

Theorem 3: Let |M | be the number of objects in an MBR
M , and P (M = [xi

l , x
i
u]

d) denote the probability that M is
bounded by [xi

l , x
i
u]

d (xi
u - xi

l > 1), then

P(M = [x
i
l, x

i
u]

d
, |M|) =

∏
1≤i≤d

⎛
⎜⎜⎝

∑|M|−1
j=1

∑|M|−j
k=1

((
|M|
j

)(
|M| − j

k

)
(xi

u − xi
l − 1)|M|−j−k

)

(ni)|M|

⎞
⎟⎟⎠
(9)

where in the ith dimension,
(

|M|
j

)
represents the number of

ways of selecting j objects qj (qj .x
i = M.xi

l) from an MBR
of |M | objects; similarly,

(
|M| − j

k

)
indicates the number

of ways of selecting k objects qk (qk.x
i = M.xi

u) from the
remaining objects, where j ≥ 1, k ≥ 1, and j + k ≤ |M |.
Then, after selecting qj and qk, the number of combinations
of the remaining |M | − j − k objects in the range of (M.xi

l ,
M.xi

u) is (xi
u−xi

l−1)|M|−j−k. Thus, with the consideration of
the independence of object attributes and the total number of
object selections ((ni)|M|), Equ. 9 calculates the probability of
an MBR with a given bound [xi

l , x
i
u]

d under a uniform object
distribution. There are two special cases: (1) if xi

u = xi
l , then

the attribute values of all objects must be M.xi
l , and we have

P (M = [xi
l , x

i
u]

d, |M |) =
∏

1≤i≤d(
1
ni)

|M|; (2) if xi
u - xi

l = 1,

then there is no object falling in the range of (M.xi
l , M.xi

u),
and in the ith dimension, the probability that M is bounded

by [xi
l , x

i
u] is

(∑|M|−1
j=1

(
|M|
j

))
/(ni)|M|.

Given an MBR M ′, the probability that a random MBR
M is dominated by M ′, denoted by P (M ′ ≺ M), is equal
to the probability that M is dominated by any object in
PIV OT (M ′) by Theorem 1. The probability that M is
dominated by a point can be evaluated by the probability that
M is in the dominance region of the point. Thus, we can obtain
P (M ′ ≺ M) by using Property 3.

Theorem 4: Given an MBR M ′ = [x′i
l , x

′i
u]

d, let P (M ′ ≺
M) denote the probability that a random MBR M = [xi

l , x
i
u]

d

is dominated by M ′, then

P (M
′
≺ M) =

∑
p∈PIV OT (M′)

P (p ≺ M)

− (|PIV OT (M
′
)| − 1) × P (M

′
.x

′
u ≺ M)

(10)

where

P (p ≺ M) =
∑

p.xi<M.xi
l≤M.xi

u<ni

1≤i≤d

P(M = [x
i
l, x

i
u]

d
, |M|)

(11)

P (M ′ ≺ M) is the total sum of the probability that M is pos-
sibly dominated by pivot points of M ′. Since the dominance
regions of the pivot points overlap with each other, we borrow
the idea of Property 3, in which the volume of the overlapping
region is equal to the volume of the dominance region of
M ′.x′

u. Moreover, P (p ≺ M) indicates the probability that
M is dominated by a point p, which is the total probability of
all possible M.xl that are dominated by p. With the probability
of domination between two MBRs, we can get the probability
that an MBR is a skyline MBR in a given set of MBRs as
follows.

Theorem 5: Given a set of MBRs M and an MBR M ∈ M,
let P (M ∈ SKY DS(M)) be the expected probability that M
is in skyline MBRs of M, SKY DS(M), then

P(M ∈SKY
DS

(M)) = (|M| − 1)×∏
0≤xi

l≤xi
u<ni

1≤i≤d

(
(1 − P (M′ ≺ M)) × P (M′ = [xi

l, x
i
u]d, |M′|)

)
(12)

where (1 − P (M ′ ≺ M)) × P (M ′, |M ′|) represents the
probability that M ′ is in M and M ′ does not dominate M . In
fact, M has |M| MBRs, and P (M ∈ SKY DS(M)) calculates
the probability that M is not dominated by any other MBRs
in M.

Theorem 6: Given a set of MBRs M, let |SKY DS(M)|
be the expected cardinality of skyline MBRs of M, then

|SKY
DS

(M)| = |M|×∑
0≤xi

l≤xi
u<ni,

1≤i≤d

(P (M = [xi
l, x

i
u]d, |M|) × P (M ∈ SKY DS(M))) (13)

where P (M = [xi
l , x

i
u]

d, |M |) × P (M ∈ SKY DS(M))
represents the probability that M is in M and M is in the
skyline MBRs of M.

812

2) Continuous Data Space: In a continuous data space Rd

= [0, ni]
d, an object is represented by �x for convenience in this

paper. We assume that given a sufficiently large dataset, the
data distribution can be represented by a joint density function
f(�x), which describes the probability density of object q =
{�x} in the dataset. For example, the joint density function of
a uniform dataset can be represented by f(�x) =

∏
1≤i≤d(

1
ni
)

Theorem 7: In a continuous data space Rd = [0, ni]
d, let

P (M = [�xl, �xu]) denote the probability that M is bounded by
[�xl, �xu], where xi

u > xi
l in the ith dimension, then

P (M = [�xl, �xu], |M |) =

(∫ �xu

�xl

f(�x) d�x

)|M|

(14)

Theorem 8: Given an MBR M ′ = [�x′
l,
�x′
u], let P (M ′ ≺

M) denote the probability that a random MBR M is dominated
by M ′, then P (M ′ ≺ M) can be calculated by Equ. 10, where

P (p ≺ M) =

∫
M∈[p. �xi, �ni]

P (M, |M |) (15)

By using Equation 12, the expected cardinality of a set of
MBRs can be calculated as follows.

Theorem 9: Given a set of MBRs M, let |SKY DS(M)|
be the expected cardinality of skyline MBRs of M, then

|SKY
DS

(M)| = |M| ×

∫
M∈Rd

(P (M, |M|) × P (M ∈ SKY
DS

(M))) (16)

B. Cardinality of Dependent Groups of MBRs

We provide the cardinality estimation of dependent groups
of MBRs by using Theorem 2.

Theorem 10: Given an MBR M , let P (M ′ ∈ DG(M))
denote the probability that there is an MBR M ′ in the
dependent group of M , then

P (M
′
∈DG(M)) = P (M

′
.pl ≺ M.pu) − P(M

′
.pu ≺ M.pl)

=

∫
M′. �pl∈[�0, M. �pu]

P (M
′
, |M

′
|) −

∫
M′. �pu∈[�0, M. �pl]

P (M
′
, |M

′
|)

(17)

Theorem 11: Given an MBR M in a set of MBRs M, let
|DG(M)| be the expected size of the dependent group of M ,
then

|DG(M)| = (|M| − 1) ×

∫
M′∈Rd

(
P(M

′
, |M

′
|) × P (M

′
∈ DG(M))

)
(18)

where P (M ′, |M ′|)× P (M ′ ∈ DG(M)) indicates the proba-
bility that M is dependent on a random MBR M ′ and M ′ is
in M.

IV. ALGORITHM ANALYSIS

A. Complexity of Skyline Query over MBRs

We assume that the input R-tree of our algorithms is a
complete tree. All objects are generated under a uniform data
distribution and randomly distributed among nodes at bottom
of the tree. We will start with the analysis in our in-memory
skyline query algorithm (Alg. 1), and then extend it to the
external memory scenario (Alg. 2).

Alg. 1 loads all nodes into memory; if a node is dominated
by any other nodes visited so far, the node and its descendants
are discarded without access. We estimate the cost of Alg. 1
by evaluating the probability of each node that would be
accessed. The cost of dominance test for every node is linear

to the number of skyline nodes in the precedent nodes of
currently visited node. Since the R-tree is a complete tree,
it is easy to get the number of precedent nodes of a given
node. We use Prec(M) to denote the set of M ’s precedent
nodes that directly contain references of input objects. Take
Fig. 6 for example, Prec(M12) = {M21,M22,M23,M24}. The
cost of dominance test for M12 is |SKY DS(Prec(M12))| (See
Equ. 16), comparing M12 with skyline MBRs found so far.

Next, we focus primarily on the probability of every node
being accessed by Alg. 1. Let M be a node in the R-tree (M
is not the root node), Mp be the parent node of M and Mpp

be the parent node of Mp, the probability of a node being
accessed can be calculated by using the following three rules
(recursion): (1) the root node cannot be dominated; (2) if Mp

is accessed, M can be pruned if Mp is dominated by a node
in Prec(Mp); (3) if Mp is accessed, M will be accessed if
Mp is not dominated by any node in Prec(Mp). Thus, let
PA(M) and PD(M) be the probability that M is accessed
and dominated in the evaluation process, respectively, PA(M)
is equal to the probability that Mp is not dominated by any
nodes in Prec(Mp) in the condition that Mp is accessed. By
the properties of conditional probability, we can get

PA(M) = P (Mp ⊀ Prec(Mp) | Mp is access)

= P (Mp ⊀ Prec(Mp) ∩ Mp is access)/PA(Mp)

= P (Mp ⊀ Prec(Mp) ∩ Mpp ⊀ Prec(Mpp))/PA(Mp)

(19)

To calculate P (Mp ⊀ Prec(Mp) ∩ Mpp ⊀ Prec(Mpp)), two
properties are important: (1) Mp is a subset of Mpp; if Mpp is
not dominated by a set of MBRs, Mp cannot be dominated by
the set; (2) Prec(Mp) is a superset of Prec(Mpp), because
there might be precedent nodes of Mp in the sub-tree rooted
at Mpp. Thus, the cases of Mp ⊀ Prec(Mp) contain the cases
of Mp ⊀ Prec(Mpp), which contain the cases of Mpp ⊀
Prec(Mpp). Then, combined with Equ. 19, we can get

PA(M) = P (Mp ⊀ Prec(Mp) ∩ Mpp ⊀ Prec(Mpp))/PA(Mp)

= P (Mp ⊀ Prec(Mp))/PA(Mp)
(20)

Take Fig. 8 for example, M1 is the root node; PA(M1) = 1 and
PD(M1) = 0. Then, M2 and M3 are two child nodes of M1,
so PA(M2) = PA(M3) = 1; PD(M2) = 0, because Prec(M2)
is an empty set; PD(M3) = P (Prec(M3) ≺ M3). PA(M4)
and PA(M5) can be calculated in a similar manner.

The expected computational complexity and I/O cost of
Alg. 1 over the R-tree RQ are

ECCI−SKY (RQ) =
∑

M∈RQ

(PA(M)× |Prec(M)|)

EIOI−SKY (RQ) =
∑

M∈RQ

(PA(M))
(21)

The cost of our external skyline algorithm (Alg. 2) can be
estimated by using Equ. 21. Alg. 2 iterates all sub-trees, the
number of which can be estimated by the depth of the R-tree
and the sub-trees. Let L be the level of sub-trees in the R-tree,
then, the expected computational complexity and I/O cost of
Alg. 2 are

ECCE−SKY (RQ) =

⎛
⎜⎝ ∑
0≤i<L

|SKY
DS

(MS)|
i

⎞
⎟⎠ × ECCI−SKY (S)

EIOE−SKY (RQ) =

⎛
⎜⎝ ∑
0≤i<L

|SKY
DS

(MS)|
i

⎞
⎟⎠ × EIOI−SKY (S)

(22)

813

where S denotes a sub-tree of the R-tree (assuming the
sizes of all sub-trees are the same), and |SKY DS(MS)|

i

represents the number of sub-trees accessed at level i. For
example, Alg. 2 accesses one sub-tree at the top level (i=0),
and |SKY DS(MS)| sub-trees at the second level (i=1). There
might be sub-trees that are discarded without access at the
second level because their root nodes have been eliminated
when the top sub-tree is accessed. Thus, the total number of
sub-trees accessed in the R-tree is

∑
0≤i<L |SKY DS(MS)|

i.

B. Complexity of Dependent Group Generation

Our in-memory dependent group generation method ex-
amines the dependency between every pair of MBRs, the
computational complexity of which is O(|M|2), where M

denotes the input set of MBRs. The I/O cost is O(|M|).
In Alg. 4, we first sort all datasets in order in a particular
dimension, both the computational complexity and I/O cost

of which are O(|M| × logW (|M|
W

)), where W is the size of
memory in MBRs. Then, we use a sliding window to detect
the dependency among datasets. Since the expected size of
dependent groups is provided in Theorem 11, the cost of the
dependency test can be estimated by O(A × |M|), where
A denotes the expected size of the dependent group of M,
which can be calculated by using Equ. 18. Thus, the total
computational complexity and I/O cost of Alg. 4 are

ECCE−DG−1(M) = O(|M| × (logW (|M|/W) + A))

EIOE−DG−1(M) = O(|M| × (logW (|M|/W) + A))
(23)

Alg. 5 compares every MBR with all MBRs in its sibling
sub-trees. All dependent group information in sub-trees is
used for searching and expanding dependent sub-trees. Let L
be the level of sub-trees in the input R-tree RQ and M be
a node at bottom of RQ, to calculate the dependent group
of M , the number of nodes needed to compare with M is
O(AL), because A child nodes are expected to be visited when
expanding a sub-tree. The expected skyline MBRs of the R-tree
RQ can be calculated by using Equ. 16. So, we arrive at the
computational complexity and I/O cost of Alg. 5 as follows.

ECCE−DG−2(M) = O(AL × |SKY DS(RQ)|)

EIOE−DG−2(M) = O(AL × |SKY DS(RQ)|)
(24)

V. EXPERIMENTAL VALIDATION

In this section, we evaluate the performance of the pro-
posed skyline solutions over both synthetic and real-world
datasets. We implemented two proposed solutions: SKY -SB
uses the sorting-based (Alg. 4) dependent group generation
method; SKY -TB produces dependent groups by utilizing
the R-tree index (Alg. 5). We also implemented BBS, ZSearch,
and SSPL as three index-based skyline baselines, since they
are among the most efficient index-based skyline solutions
in literature. The R-tree and ZBtree were created by using
the Nearest-X and Sort-Tile-Recursive (STR) bulk-loading
methods in a pre-processing stage [19]. The average result
of using the two methods will be displayed in the following
subsections. The execution time of the index creation is not
included in our experimental results. All objects in heap are
kept in memory in BBS and ZSearch. SSPL pre-sorts input
datasets in every dimension in a pre-processing stage and uses
SFS to produce skylines in the second step. All experiments

were conducted on a CentOS Linux server with two Intel
Xeon E5530 2.40 GHz processors and 16 GB of memory. All
solutions were implemented in Java.

Two real-world datasets were downloaded from IMDb1

and Tripadvisor2. The IMDb dataset contains 680,146 movie
reviews, each of which consists of an overall rating and the
number of votes for the movie. The Tripadvisor dataset has
240,060 hotel ratings in 7 dimensions. We also randomly
generated uniform and anti-correlated datasets in a [0, 109]d

space. The skyline query over the two datasets is challenging
due to the large number of object comparisons and I/O cost.
The synthetic datasets vary the size from 20 K to 1 M objects
with respect to 2-8 dimensions. The MBRs at the bottom of
the R-tree generated by STR keeps a similar distribution with
object distribution; while Nearest-X splits the space into MBRs
of equal size on the first dimension. All datasets and R-tree
indexes are initially on disk, and then loaded into memory only
when they are required by solutions.

A. Effect of Dataset Cardinality

Fig. 9 displays the execution time, the number of accessed
nodes, and the number of object comparisons of the five
solutions with respect to varying dataset cardinality. The fanout
of the R-tree and ZBtree is fixed at 500. The dimensionality of
datasets is fixed at 5. We observe that all solutions consume
more execution time over larger uniform and anti-correlated
datasets. Although SKY-SB and SKY-TB access more nodes
in the experiments, they outperform other solutions (on average
34% and 128% faster than ZSearch and SSPL over uni-
form datasets) by significantly reducing the number of object
comparisons in the query evaluation (because the skyline
computation is CPU-intensive [13]). This can be explained by
the following four points. First, BBS seriously suffers from
maintaining objects in heap. The cost of object comparison
dominates the query evaluation process rather than the I/O
cost. SKY-SB and SKY-TB access around one thousand more
nodes in the worst case, which could be completed in 10
seconds3. Moreover, as Fig. 9(e) displays, the number of object
comparisons for finding objects that have smallest mindist
ranges from 550 million (over 200 K uniform dataset) to
5.5 billion (over 1 M uniform dataset), the cost of which is
significantly higher than the cost of the dominance test, since
the number of objects in the heap is much greater than the
number of skyline candidates.

Second, because of the close relation between the skyline
query and the Z-order curve, ZSearch has a smaller heap and
less object comparisons (2.2 billion object comparisons over
1 M uniform dataset).

Third, SSPL performs 199 million object comparisons
when answering skyline queries over 1 M uniform dataset.
There are around 151 K candidates remaining after the first
scan. Although a majority of objects have been eliminated,
applying SFS to these candidates is still expensive. Moreover,
there is an additional step that merges all visited objects in
indexes after the first scan, which incurs additional cost of
object comparison.

1http://www.imdb.com/interfaces
2http://www.tripadvisor.com/
3The random access rate is around 1 page of 4 KBytes per 10 milliseconds.

814

(a) Uniform datasets. (b) Anti-correlated datasets.

(c) Uniform datasets. (d) Anti-correlated datasets.

(e) Uniform datasets. (f) Anti-correlated datasets.

Fig. 9. Varying dataset cardinality.

Last, SKY-SB and SKY-TB produce around 2K skyline
MBRs after performing a skyline query over the R-tree index
of 1M uniform dataset, which can complete in 4-5 seconds.
Then, the dependent groups of these MBRs are generated, and
the average size of the dependent groups is around 1K. Finally,
global skylines are output by performing 51 million object
comparisons in SKY-SB and 76 million object comparisons in
SKY-TB, which is much less than that of BBS, ZSearch, or
SSPL.

The benefits of using SKY-SB and SKY-TB become larger
over 1M anti-correlated datasets (on average 1.0-14.4 times
faster than other solutions), because BBS and ZSearch main-
tain relatively greater number of objects in heap during the
query evaluation. In SSPL, the pivot object can only eliminate
2% of objects in the first scan, which is much smaller than
85% over uniform datasets. In SKY-SB and SKY-TB, there is
no MBR eliminated in skyline query evaluation over MBRs;
however, the average size of dependent groups is around 600,
which is around half size of the total number of MBRs. As
Fig. 9(f) displays, the total numbers of object comparisons in
SKY-SB and SKY-TB are 7.6 and 7.7 billion, which is much
smaller than BBS (290 billion), ZSearch (85 billion), and SSPL
(46 billion).

B. Effect of Dataset Dimensionality

The effect of dataset dimensionality is displayed in Fig. 10.
The cardinality of uniform and anti-correlated datasets is fixed
at 600K. As the dimensionality grows, the number of skyline
candidates increases because the probability of objects being
dominated is lower in a higher dimensional space. Thus,
all solutions need more object comparisons and execution
time in the skyline query evaluation. SKY-SB and SKY-
TB do not eliminate MBRs in a high dimensional space

(a) Uniform datasets. (b) Anti-correlated datasets.

(c) Uniform datasets. (d) Anti-correlated datasets.

(e) Uniform datasets. (f) Anti-correlated datasets.

Fig. 10. Varying dataset dimensionality.

by using the skyline query over MBRs (thereby accessing
more nodes); however, dependent group information helps
significantly reduce the number of object comparisons, and
achieves, on average, 230% and 240% improvement in terms
of execution time over other solutions. Moreover, the execution
time of BBS and ZSearch grows fast because the number
of intermediate objects in heap increases rapidly. In SSPL,
the elimination rate of the pivot point decreases from 99.2%
in 2-dimensional space to 30% in 8-dimensional space over
uniform datasets, and keeps in the range of 0% to 10% over
anti-correlated datasets. The increase in the execution time of
SSPL is primarily contributed by SFS, the cost of which is
quadratic to the number of intermediate objects. One more
interesting observation is that the number of accessed nodes
of all solutions in 7-dimensional space is smaller than the ones
in 6-dimensional or 8-dimensional space, because the nodes in
R-tree or ZBtree have fewer nodes in 7-dimensional space.4

C. Effect of Fan-out of R-tree and ZBtree

The fanout of the R-tree is important to our proposed
solutions. The more objects there are in an MBR, the more
time our solutions could save if the MBR is dominated during

4In our implementation of Sort-Tile-Recursive (STR) bulk-loading method,
every tile contains an MBR in equal size. In a d-dimensional space, we sort
all objects on the i

th dimension, and partition the space into N
i {d-i}-

dimensional subspaces; each subspace contains an identical number of objects.
Thus, the number of tiles, or the number of nodes at the bottom of R-tree or
ZBtree, is N

d. Moreover, both datasets contain 600K objects; the fan-out is
fixed at 500. So, there are at least 1,200 tiles in R-tree or ZBtree. We select
the smallest N in our experiments, and the number of tiles in 7-dimensional
space is 37 = 2187, which is much smaller than the number of tiles in
6-dimensional (46 = 4096) and 8-dimensional (38 = 6561) space. The
Nearest-X bulk-loading method only sorts objects on the 1st dimension and
generates identical number of tiles in experiments.

815

(a) Uniform datasets. (b) Anti-correlated datasets.

(c) Uniform datasets. (d) Anti-correlated datasets.

(e) Uniform datasets. (f) Anti-correlated datasets.

Fig. 11. Varying the fanout of R-tree and ZBtree.

the query evaluation. On the other hand, the probability of the
MBR being dominated becomes lower, because the MBR has
higher opportunity to have objects that are not dominated by
other MBRs. Thus, to evaluate the effect of fan-out setting on
skyline solutions, we vary the fanout of the R-tree and ZBtree
from 100 to 900.5 The datasets contain either 600K uniform
objects or 600K anti-correlated objects in a 5-dimensional
space.

Fig. 11 presents the execution time, the number of accessed
nodes, and the number of object comparisons in the query
evaluation by four solutions. SSPL is not presented because it
does not rely on any tree-based index. Taking uniform datasets
for example, 300 is an optimal point to BBS and ZSearch;
while SKY -SB and SKY -TB performs 7 times and 150%
faster than BBS and ZSearch when the fan-out is fixed at
700. If optimal fan-outs are set individually, SKY -SB (17
seconds) and SKY -TB (19 seconds) can achieve 117% and
95% improvement in terms of execution time over ZSearch (37
seconds). As Fig. 11(e) and Fig. 11(f) display, SKY -SB and
SKY -TB always save significant time in object comparison.
Moreover, the performance improvement in SKY -SB and
SKY -TB is larger in the experimental results over anti-
correlated datasets. SKY -SB and SKY -TB run around 16
and 24 times faster than BBS; and 7 and 11 times faster than
ZSearch. It is interesting that the execution time of SKY -SB
and SKY -TB changes slightly over anti-correlated datasets
because there are only a small number of MBRs discarded in
the first step. Most MBRs are fed into the dependent group
generation and global skyline computation.

5Every intermediate node in the R-tree or ZBtree contains an abstraction of
MBR and an array of entries referencing child nodes. Every entry is a 4-byte
integer. So, an intermediate node in a page of 4 KBytes can have up to 1014
child nodes in our implementation.

D. Evaluation on Real Datasets

We also conducted experiments on real-world datasets from
IMDb and Tripadvisor. Table I displays the execution time of
the five solutions in seconds. The experimental results indicate
that SKY -SB and SKY -TB achieve significant speedup
against the state-of-the-art skyline solutions over both datasets.
This is consistent with our previous experiments; SKY -SB
and SKY -TB perform much less object comparisons than
other solutions in the skyline query evaluation.

TABLE I. THE EXECUTION TIME (IN SECONDS) OVER

REAL-WORLD DATASETS.
SKY -SB SKY -TB BBS ZSearch SSPL

IMDb 1.45 1.20 1.86 1.76 19.11
Tripadvisor 31.98 31.20 41.16 50.05 59.03

VI. RELATED WORK

A. Skyline Query

The skyline query, also known as maximal vector com-
putation [15], was first introduced in database management
system by [2]. In their studies, BNL produces skyline objects
by comparing every pair of objects. D&C recursively merges
skyline objects in small subsets of input datasets by using a
merging skyline algorithm. SFS [6] and LESS [10] reduce the
cost of dominance test by pre-sorting objects on a particular
dimension; no object can be dominated by subsequent objects.
Sarma et al. [25] proposed a skyline solution (RAND), which
can output skyline objects in three iterations. VSkyline utilizes
vectorization for optimizing dominance test in SIMD (Single
Instruction, Multiple Data) architecture [5]. Zhang et al. [29]
partitioned the search space into hypercubes, and organized
them in a tree structure to avoid unnecessary object compar-
isons. Lee et al. [16] explored an optimal skyline candidate,
which partitions the search space in a balanced manner.

Bitmap uses bit-wise operations for object comparison [27].
Index combines the data transformation mechanism and B+-
tree index for evaluating skyline queries [27]. NN finds skyline
objects by recursively applying nearest neighbor queries over
input datasets [14]. Branch-and-Bound Skyline (BBS) utilizes
R-tree to expand the search space by visiting MBRs and
objects with minimum mindist [22]. ZBtree was developed to
store objects based on their Z-order [18]. Shang and Kitsure-
gawa proposed a determination and elimination framework for
efficient skyline evaluation over anti-correlated datasets [26].

The Skyline with Sorted Positional index Lists (SSPL) that
sorts objects in every dimension was developed to efficiently
find an object, which can dominate all objects that have not
been visited [11]. Then, an existing sorting-based skyline
algorithm is applied to visited objects for producing skyline
objects. To the best of our knowledge, the early pruning can
only be applied to approximate skyline solutions, even if the
probability of either discarding real skyline objects or returning
false positives is very low (<0.01%).

A skyline ordering solution that relies on a skyline-based
partitioning method was developed for size constrained skyline
queries [20]. Skyline queries have also been studied in Peer-
to-Peer systems and distributed systems [7] [28].

Hose et al. proposed a skyline query over regions [12].
The dominance test between two regions requires comparing
all objects in the two regions, which differs from our proposed

816

skyline query over MBRs. The dominance test between two
MBRs does not access attribute values of objects in our
solutions. A distributed Skyline method SkyPlan [24] describes
the dominance relationships between two MBRs (M and M ′)
in three categories: (1) M dominates M ′; (2) M partially
dominates M ′; and (3) M and M ′ are incomparable. The
dominance test is performed by using the minimum and
maximum values of MBRs, which is also different from our
proposed solutions.

Our proposed solutions differ from the aforementioned
studies in the following three aspects. First, our method utilizes
R-tree index that partitions objects into smaller sets and main-
tains them in a hierarchical structure. Second, we propose a
novel skyline query over MBRs for efficient object elimination.
The dominance test between two MBRs can be performed
without retrieving any objects in the MBRs. Third, a novel
concept of dependent group based on MBRs is proposed for
reducing the cost of object comparison. Unlike the independent
group of objects in [21], the dependent group of an MBR
consists of all MBRs on which the given MBR is dependent.
The detailed attributes of objects in the MBRs are not accessed
in the dependency test.

B. Skyline Cardinality Estimation

Based on statistical independence and sparseness, Bentley
et al. reported that the expected size of skylines over datasets of
n objects in a d-dimensional space, Ld,n, is O((ln n)d−1) [1].
Buchta provided that Ld,n =

∑n

k=1(−1)k+1 ×
(
n
k

)
1

kd−1 [3].

When duplicate object attributes are considered, God-
frey proposed that Ld,n is equal to the harmonic number
Hd−1,n [9]. Alternatively, Chaudhuri et al. [4] estimated Ld,n

and the I/O cost of BNL and SFS algorithms based on a
probabilistic model. Zhang et al. [30] approached the skyline
cardinality by developing a kernel-based method, which is
nonparametric and does not rely on any assumptions about
data distribution. Shang and Kitsuregawa [26] developed a
polynomial estimation method for skyline cardinality on anti-
correlated distribution. However, we primarily target cardinal-
ity estimation of skyline query over MBRs and dependent
groups of MBRs in this paper. All aforementioned methods
cannot be applied to the analysis of the two concepts due to
the difference in the nature of the problems.

VII. CONCLUSION

We propose two advanced skyline solutions utilizing novel
concepts of skyline query and dependent groups over MBRs
for minimizing the cost of dominance test. By using the R tree
index of the input dataset, our solutions first search skyline
MBRs in the depth-first search manner. Then, the dependent
group information enables us to limit the search space; objects
are only needed to compare with the ones on which they are
dependent. The efficiency and effectiveness of our proposed
solutions are verified through extensive experiments.

REFERENCES

[1] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On
the Average Number of Maxima in a Set of Vectors and Applications.
J. ACM, 25(4):536–543, 1978.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In
ICDE, pages 421–430, 2001.

[3] C. Buchta. On the Average Number of Maxima in a Set of Vectors.
Information Processing Letters, 33(2):63–65, 1989.

[4] S. Chaudhuri, N. N. Dalvi, and R. Kaushik. Robust Cardinality and
Cost Estimation for Skyline Operator. In ICDE, page 64, 2006.

[5] S.-R. Cho, J. Lee, S. won Hwang, H. Han, and S.-W. Lee. VSkyline:
vectorization for efficient skyline computation. SIGMOD Record,
39(2):19–26, 2010.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Presorting.
In ICDE, pages 717–719, 2003.

[7] B. Cui, L. Chen, L. Xu, H. Lu, G. Song, and Q. Xu. Efficient skyline
computation in structured peer-to-peer systems. TKDE, 21(7):1059–
1072, 2009.

[8] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel Distributed
Processing of Constrained Skyline Queries by Filtering. In ICDE, pages
546–555, 2008.

[9] P. Godfrey. Skyline cardinality for relational processing. In FoIKS,
pages 78–97, 2004.

[10] P. Godfrey, R. Shipley, and J. Gryz. Maximal Vector Computation in
Large Data Sets. In VLDB, pages 229–240, 2005.

[11] X. Han, J. Li, D. Yang, and J. Wang. Efficient Skyline Computation
on Big Data. TKDE, 25(11):2521–2535, 2013.

[12] K. Hose, C. Lemke, and K. Sattler. Processing relaxed skylines in
PDMS using distributed data summaries. In CIKM, pages 425–434,
2006.

[13] K. Hose and A. Vlachou. A survey of skyline processing in highly
distributed environments. VLDB J., 21(3):359–384, 2012.

[14] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. In VLDB, pages 275–286, 2002.

[15] H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of
a Set of Vectors. J. ACM, 22(4):469–476, 1975.

[16] J. Lee and S. won Hwang. Bskytree: scalable skyline computation using
a balanced pivot selection. In EDBT, pages 502–513, 2010.

[17] K. C. K. Lee, W. Lee, B. Zheng, H. Li, and Y. Tian. Z-SKY: an
efficient skyline query processing framework based on Z-order. VLDB

J., 19(3):333–362, 2010.

[18] K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the Skyline
in Z Order. In VLDB, pages 279–290, 2007.

[19] S. T. Leutenegger, J. M. Edgington, and M. A. López. STR: A Simple
and Efficient Algorithm for R-Tree Packing. In ICDE, pages 497–506,
1997.

[20] H. Lu, C. S. Jensen, and Z. Zhang. Flexible and Efficient Resolution
of Skyline Query Size Constraints. TKDE, 23(7):991–1005, 2011.

[21] K. Mullesgaard, J. L. Pedersen, H. Lu, and Y. Zhou. Efficient Skyline
Computation in MapReduce. In EDBT, 2014.

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An Optimal and Progressive
Algorithm for Skyline Queries. In SIGMOD Conference, pages 467–
478, 2003.

[23] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline compu-
tation in database systems. ACM Trans. Database Syst., 30(1):41–82,
2005.

[24] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørvåg.
Efficient execution plans for distributed skyline query processing. In
EDBT, pages 271–282, 2011.

[25] A. D. Sarma, A. Lall, D. Nanongkai, and J. J. Xu. Randomized Multi-
pass Streaming Skyline Algorithms. PVLDB, 2(1):85–96, 2009.

[26] H. Shang and M. Kitsuregawa. Skyline Operator on Anti-correlated
Distributions. PVLDB, 6(9):649–660, 2013.

[27] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline
Computation. In VLDB, pages 301–310, 2001.

[28] J. Zhang, X. Jiang, W.-S. Ku, and X. Qin. Efficient Parallel Skyline
Evaluation using MapReduce. TPDS, 2015.

[29] S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable skyline compu-
tation using object-based space partitioning. In SIGMOD Conference,
pages 483–494, 2009.

[30] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. K. H. Tung. Kernel-
based skyline cardinality estimation. In SIGMOD Conference, pages
509–522, 2009.

817

